A Formal Semantics for Multi-level Staged Configuration

Andreas Classen, Arnaud Hubaux and Patrick Heymans
PReCISE Research Centre,
Faculty of Computer Science,
University of Namur
5000 Namur, Belgium
E-mail: \{acs, ahu, phe\}@info.fundp.ac.be

Abstract

Multi-level staged configuration (MLSC) of feature diagrams has been proposed as a means to facilitate configuration in software product line engineering. Based on the observation that configuration often is a lengthy undertaking with many participants, MLSC splits it up into different levels that can be assigned to different stakeholders. This makes configuration more scalable to realistic environments. Although its supporting language (cardinality based feature diagrams) received various formal semantics, the MLSC process never received one. Nonetheless, a formal semantics is the primary indicator for precision and unambiguity and an important prerequisite for reliable tool-support.

We present a semantics for MLSC that builds on our earlier work on formal feature model semantics to which it adds the concepts of level and configuration path. With the formal semantics, we were able to make the original definition more precise and to reveal some of its subtleties and incompletenesses. We also discovered some important properties that an MLSC process should possess and a configuration tool should guarantee. Our contribution is primarily of a fundamental nature, clarifying central, yet ambiguous, concepts and properties related to MLSC. Thereby, we intend to pave the way for safer, more efficient and more comprehensive automation of configuration tasks.

1 Introduction

Feature Diagrams (FDs) are a common means to represent, and reason about, variability during Software Product Line (SPL) Engineering (SPLE) [10]. In this context, they have proved to be useful for a variety of tasks such as project scoping, requirements engineering and product configuration, and in a number of application domains such as telecoms, automotive and home automation systems [10].

The core purpose of an FD is to define concisely the set of legal configurations – generally called products – of some (usually software) artefact. An example FD is shown in Figure 1. Basically, FDs are trees whose nodes denote features and whose edges represent top-down hierarchical decomposition of features. Each decomposition tells that, given the presence of the parent feature in some configuration \(c \), some combination of its children should be present in \(c \), too. Which combinations are allowed depends on the type of the decomposition, that is, the Boolean operator associated to the parent. In addition to their tree-shaped backbone, FDs can also contain cross-cutting constraints (usually requires or excludes) as well as side constraints in a textual language such as propositional logic [1].

Given an FD, the configuration or product derivation process is the process of gradually making the choices defined in the FD with the purpose of determining the product that is going to be built. In a realistic development, the configuration process is a small project itself, involving many people and taking up to several months [11]. In order to master the complexity of the configuration process, Czarnecki et al. [5] proposed the concept of multi-level staged configuration (MLSC), in which configuration is carried out by different stakeholders at different levels of product development or customisation. In simple staged configuration, at each stage some variability is removed from the FD until none is left. MLSC generalises this idea to the case were a set of related FDs are configured, each FD pertaining to a so-called ‘level’. This addresses problems that

\(^{1}\)Sometimes DAGs are used, too [8].
occur when different abstraction levels are present in the same FD and also allows for more realism since a realistic project would have several related FDs rather than a single big one [12, 11].

Even though its supporting language (cardinality based FDs) received various formal semantics [4,13], the MLSC process never received one. Nonetheless, a formal semantics is the primary indicator for precision and unambiguity and an important prerequisite for reliable tool-support. This paper is intended to fill this gap with a semantics for MLSC that builds on our earlier work on formal semantics [14].

Our FD language will be simply called FD, and its syntactic domain is defined as follows.

Definition 1 (Syntactic domain \mathcal{L}_{FD}) $d \in \mathcal{L}_{FD}$ is a 6-tuple $(N, P, r, \lambda, DE, \Phi)$ such that:

- N is the (non empty) set of features (nodes).
- $P \subseteq N$ is the set of primitive features.
- $r \in N$ is the root.
- $DE \subseteq N \times N$ is the decomposition relation between features which forms a tree. For convenience, we will use $\text{children}(f)$ to denote $\{g | (f, g) \in DE\}$, the set of all direct sub-features of f, and write $a \rightarrow a'$ sometimes instead of $(a, a') \in DE$.
- $\lambda : N \rightarrow N \times N$ indicates the decomposition type of a feature, represented as a cardinality $(i..j)$ where i indicates the minimum number of children required in a product and j the maximum. For convenience, special cardinalities are indicated by the Boolean operator they represent, as shown in Table 1.
- Φ is a formula that captures crosscutting constraints ($\llreq requires \ggreq$ and $\llreq includes \ggreq$) as well as textual constraints. Without loss of generality, we consider Φ to be a conjunction of Boolean formulae on features, i.e. $\Phi \in \mathbb{B}(N)$, a language that we know is expressively complete wrt. \mathcal{S}_{FD} [14].

Furthermore, each $d \in \mathcal{L}_{FD}$ must satisfy the following well-formedness rules:

- r is the root: $\forall n \in N(\exists n' \in N \bullet n' \rightarrow n) \iff n = r$,
- DE is acyclic: $\forall n_1, ..., n_k \in N \bullet n_1 \rightarrow .. \rightarrow n_k \rightarrow n_1$.
- Terminal nodes are $\{0..0\}$-decomposed.

Table 1. FD decomposition operators

<table>
<thead>
<tr>
<th>Concrete syntax</th>
<th>Boolean operator</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>\land</td>
<td>\lor</td>
<td>$(n..n)$</td>
</tr>
<tr>
<td>\lor</td>
<td>\land</td>
<td>$(1..1)$</td>
</tr>
</tbody>
</table>

2Some harmless simplifications are made wrt. the original [13].

Figure 1. FD example, adapted from [5].
for convenience, each feature is given a name and a one-letter acronym. The latter depicts an FD for the tax gateway component of an e-Commerce system [5]. The component performs the calculation of taxes on orders made with the system. The customer who is going to buy such a system has the choice of three tax gateways, each offering a distinct functionality. Note that the hollow circle above feature B is syntactic sugar, expressing the fact that the feature is optional. In L_{FD}, an optional feature f is encoded with a dummy (i.e. non-primitive) feature d that is $\langle 0..1 \rangle$-decomposed and having f as its only child [13]. Let us call B_d the dummy node inserted between B and its parent. The diagram itself can be represented as an element of L_{FD} where $N = \{ G, T, E, \ldots \}, P = N \setminus \{ B_d \}, r = G, E = \{ (G, T), (G, E), \ldots \}, \lambda(G) = \langle 1..1 \rangle, \ldots$ and $\Phi = \emptyset$.

The semantic domain formalises the real-world concepts that the language models, and that the semantic function associates to each diagram. FDs represent SPLs, hence the following two definitions.

Definition 2 (Semantic domain S_{FD}) $S_{FD} \triangleq \mathcal{PPP}$, indicating that each syntactically correct diagram should be interpreted as a product line, i.e. a set of configurations or products (set of sets of primitive features).

Definition 3 (Semantic function $[d]_{FD}$) Given $d \in L_{FD}$, $[d]_{FD}$ returns the valid feature combinations $FC \in \mathcal{PN}$ restricted to primitive features: $[d]_{FD} = FC_{|P}$, where the valid feature combinations FC of d are those $c \in \mathcal{PN}$ that:

- contain the root: $r \in c$,
- satisfy the decomposition type: $f \in c \land \lambda(f) = \langle m..n \rangle \Rightarrow m \leq \vert children(f) \cap c \vert \leq n$,
- justify each feature: $g \in c \land g \in children(f) \Rightarrow f \in c$,
- satisfy the additional constraints: $c \vDash \Phi$.

The reduction operator used in Definition 3 will be used throughout the paper; it is defined as follows.

Definition 4 (Reduction $A | B$) $A | B \triangleq \{ a' | a \in A \land a' = a \cap B \} = \{ a \cap B | a \in A \}$

Considering the previous example, the semantic function maps the diagram of Figure 1 to all its valid feature combinations, i.e. $\{ (G, T, M, O), (G, T, M, I), \ldots \}$.

As shown in [13], this language suffices to retrospectively define the semantics of most common FD languages. The language for which staged configuration was initially defined [5], however, cannot entirely be captured by the above semantics [14]. The concepts of feature attribute, feature reference and feature cardinality\(^3\) are missing. Attributes can easily be added to the semantics [4], an exercise we leave for future work. Feature cardinalities, as used for the cloning of features, however, would require a major revision of the semantics [4].

Benefits, limitations and applications of the above semantics have been discussed extensively elsewhere [13]. We just recall here that its main advantages are the fact that it gives an unambiguous meaning to each FD, and makes FDs amenable to automated treatment. The benefit of defining a semantics before building a tool is the ability to reason about tasks the tool should do on a pure mathematical level, without having to worry about their implementation. These so-called decision problems are mathematical properties defined on the semantics that can serve as indicators, validity or satisfiability checks.

In the present case, for instance, an important property of an FD, its satisfiability (i.e. whether it admits at least one product), can be mathematically defined as $[d]_{FD} \neq \emptyset$. As we will see later on, the lack of formal semantics for staged configuration makes it difficult to precisely define such properties.

For the remainder of the paper, unless otherwise stated, we always assume d to denote an FD, and $(N, P, r, \lambda, DE, \Phi)$ to denote the respective elements of its abstract syntax.

3 Multi-level staged configuration

According to the semantics introduced in the previous section, an FD basically describes which configurations are allowed in the SPL, regardless of the configuration process to be followed for reaching one or the other configuration. Still, such a process is an integral part of SPL application engineering. According to Rabiser et al. [11], for instance, the configuration process generally involves many people and may take up to several months.

Czarnecki et al. acknowledge the need for explicit process support, arguing that in contexts such as “software supply chains, optimisation and policy standards”, the configuration is carried out in stages [5]. According to the same authors, a stage can be defined “in terms of different dimensions: phases of the product lifecycle, roles played by participants or target subsystems”. In an effort to make this explicit, they propose the concept of multi-level staged configuration (MLSC).

The principle of staged configuration is to remove part of the variability at each stage until only one configuration, the final product, remains. In [5], the refinement itself is achieved by applying a series of syntactic transformations

\(^3\)Czarnecki et al. [5] distinguish group and feature cardinalities. Group cardinalities immediately translate to our decomposition types and $\langle 0..1 \rangle$ feature cardinalities to optional features. The $\langle i..k \rangle$ feature cardinalities, with $i \geq 0$ and $k > 1$, however, cannot be encoded in L_{FD}.\)
to the FD. Some of these transformations, such as setting the value of an attribute, involve constructs that are not formalised as part of the semantics defined in Section 2. The remaining transformations are shown in Figure 2. Note that they are expressed so that they conform to our semantics.

Multi-level staged configuration is the application of this idea to a series of related FDs d_1, \ldots, d_L. Each level has its own FD, and, depending on how they are linked, the configuration of one level will induce an automatic specialisation of the next level’s FD. The links between diagrams are defined explicitly through specialisation annotations. A specialisation annotation of a feature f in d_i, ($f \in N_i$), consists of a Boolean formula ϕ over the features of $d_{i-1}(\phi \in B(N_{i-1}))$. Once level $i - 1$ is configured, ϕ can be evaluated on the obtained configuration $c \in [d_{i-1}]_{\sigma_1}$, using the now standard Boolean encoding of [1], i.e. a feature variable n in ϕ is true iff $n \in c$. Depending on its value and the specialisation type, the feature f will either be removed or selected through one of the first two syntactic transformations of Figure 2. An overview of this is shown in Table 2.

Let us illustrate this on the example of the previous section: imagine that there are two times at which the customer needs to decide about the gateways. The first time (level one) is when he purchases the system. All he decides at this point is which gateways will be available for use; the diagram that needs to be configured is the one shown on the left of Figure 3. Then, when the system is being deployed (level two), he will have to settle for one of the gateways and provide additional configuration parameters, captured by the first diagram on the right side of Figure 3. Given the inter-level links, the diagram in level two is automatically specialised based on the choices made in level one.

Note that even though both diagrams in the example are very similar, they need not be so. Also note that the original paper mentions the possibility, that several configuration levels might run in parallel. It applies, for instance, if levels represent independent decisions that need to be taken by different people. As we show later on, such situations give rise to interesting decision problems.

Finally, note that the MLSC approach, as it appears in [5], is entirely based on syntactic transformations. This makes it difficult to decide things such as whether two levels A and B are commutative (executing A before B leaves the same variability as executing B before A). This is the main motivation for defining a formal semantics, as follows in the next section.

4 Dynamic FD semantics ($[.]_{CP}$)

We introduce the dynamic FD semantics in two steps. The first, Section 4.1, defines the basic staged configuration semantics; the second, Section 4.2, adds the multi-level aspect.

4.1 Staged configuration semantics

Since we first want to model the different stages of the configuration process, regardless of levels, the syntactic domain L_{FD} will remain as defined in Section 2. The semantic domain, however, changes since we want to capture the idea of building a product by deciding incrementally which configuration to retain and which to exclude.

Indeed, we consider the semantic domain to be the set of all possible configuration paths that can be taken when building a configuration. Along each such path, the initially full configuration space ($[d]_{\sigma_1}$) progressively shrinks (i.e., configurations are discarded) until only one configuration is left, at which point the path stops. Note that in this work, we thus assume that we are dealing with finite configuration processes where, once a unique configuration is reached, it remains the same for the rest of the life of the application. Extensions of this semantics, that deal with reconfigurable systems, are discussed in [3]. For now, we stick to Definitions 5 and 7 that formalise the intuition we just gave.

Definition 5 (Dynamic semantic domain S_{CP}) Given a finite set of features N, a configuration path π is a finite sequence $\pi = \sigma_1 \ldots \sigma_n$ of length $n > 0$, where each $\sigma_i \in \mathbb{P}P N$ is called a stage. If we call the set of such paths C, then $S_{CP} = \mathbb{P} C$.

The following definition will be convenient when expressing properties of configuration paths.
tools must ensure that a legal product eventually remains that effectively eliminate configurations. At the same time, make only “useful” configuration choices, that is, choices which will force compliant configuration tools to let users these lines, we draw the reader’s attention to condition (7.2) erence for checking the conformance of tools [15]. Along

Given an FD

Definition 6 (Path notation and helpers)

• \(\epsilon \) denotes the empty sequence
• \(\text{last}(\sigma_1...\sigma_k) = \sigma_k \)

Definition 7 (Staged configuration semantics \([d]_{C_P}\))

Given an FD \(d \in \mathcal{L}_{FD} \), \([d]_{C_P}\) returns all legal paths \(\pi \) (noted \(\pi \in \mathcal|[d]_{C_P} \), or \(\pi \models_{C_P} d \)) such that

(7.1) \(\sigma_1 = [d]_{FD} \)
(7.2) \(\forall i \in \{2...n\} \cdot \sigma_i \subset \sigma_{i-1} \)
(7.3) \(|\sigma_n| = 1 \)

Note that this semantics is not meant to be used as an implementation directly, for it would be very inefficient. This is usual for denotational semantics which are essentially meant to serve as a conceptual foundation and a reference for checking the conformance of tools [15]. Along these lines, we draw the reader’s attention to condition (7.2) which will force compliant configuration tools to let users make only “useful” configuration choices, that is, choices that effectively eliminate configurations. At the same time, tools must ensure that a legal product eventually remains reachable given the choices made, as requested by condition (7.3).

As an illustration, Figure 4 shows an example FD and its legal paths. A number of properties can be derived from the above definitions.

Theorem 8 (Properties of configuration paths)

(8.1) \([d]_{FD} = \emptyset \iff [d]_{C_P} = \emptyset \)
(8.2) \(\forall c \in [d]_{FD} \cdot \exists \pi \in \mathcal|[d]_{C_P} \cdot \text{last}(\pi) = \{c\} \)
(8.3) \(\forall \pi \in \mathcal|[d]_{C_P} \cdot \exists c \in [d]_{FD} \cdot \text{last}(\pi) = \{c\} \)

Contrary to what intuition might suggest, (8.2) and (8.3) do not imply that \(|[d]_{FD}| = |[d]_{C_P}| \), they merely say that every configuration allowed by the FD can be reached as part of a configuration path, and that each configuration path ends with a configuration allowed by the FD.

Czarnecki et al. [5] define a number of transformation rules that are to be used when specialising an FD, three of which are shown in Figure 2. With the formal semantics, we can now verify whether these rules are expressively complete, i.e. whether it is always possible to express a \(\sigma_i \) (\(i > 1 \)) through the application of the three transformation rules.

Table 2. Possible inter-level links; original definition [5] left, translation to FD semantics right.

<table>
<thead>
<tr>
<th>Specialisation type</th>
<th>Condition value</th>
<th>Specialisation operation</th>
<th>Equivalent Boolean constraint with (f \in N_i, \phi \in \mathcal{B}(N_{i-1}), c \in [d_{i-1}]_{CP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>true</td>
<td>select</td>
<td>(\phi(c) \Rightarrow f) Select (f), i.e. (\Phi_i) becomes (\Phi_i \cup {f}), if (\phi(c)) is true.</td>
</tr>
<tr>
<td>positive</td>
<td>false</td>
<td>none</td>
<td>(\neg \phi(c) \Rightarrow \neg f) Remove (f), i.e. (\Phi_i) becomes (\Phi_i \cup {\neg f}), if (\phi(c)) is false.</td>
</tr>
<tr>
<td>negative</td>
<td>false</td>
<td>remove</td>
<td>(\phi(c) \Leftrightarrow f) Select or remove (f) depending on the value of (\phi(c)).</td>
</tr>
<tr>
<td>negative</td>
<td>true</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td>true</td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td>false</td>
<td>remove</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Example of MLSC, adapted from [5].
individual FD becomes a child of the root of the combined FD. Because it can more easily be generalised. Indeed, a set of this information using the syntax we already have. To do so, there are two possibilities: (1) define a new abstract syntax, that makes the set of diagrams and the links between them explicit, or (2) encode steps that implement the most frequent usages. However, the practical consequences of this limitation need to be assessed empirically.

4.2 Adding levels

Section 4.1 only deals with dynamic aspects of staged configuration of a single diagram. If we want to generalise this to MSLC, we need to consider multiple diagrams and links between them. To do so, there are two possibilities: (1) define a new abstract syntax, that makes the set of diagrams and the links between them explicit, or (2) encode information using the syntax we already have.

We chose the latter option, mainly because it allows to reuse most of the existing definitions and infrastructure, and because it can more easily be generalised. Indeed, a set of FDs, linked with conditions of the types defined in Table 2, can be represented as a single big FD. The root of each individual FD becomes a child of the root of the combined FD.

The root is and-decomposed and the inter-level links are represented by Boolean formulae. To keep track of where the features in the combined FD came from, the level information will be made explicit as follows.

Definition 10 (Dynamic syntactic domain \(\mathcal{L}_{DynFD} \))

\(\mathcal{L}_{DynFD} \) consists of 7-tuples \((N, P, L, r, \lambda, DE, \Phi) \), where:

- \(N, P, r, \lambda, DE, \Phi \) follow Definition 1.
- \(L = L_1 \ldots L_\ell \) is a partition of \(N \setminus \{r\} \) representing the list of levels.

So that each \(d \in \mathcal{L}_{DynFD} \) satisfies the well-formedness rules of Definition 1, has an and-decomposed root, and each level \(L_i \in L_i \):

- is connected through exactly one node to the global root: \(\exists ! n \in L_i \bullet (r, n) \in DE \), noted hereafter root(\(L_i \)).
- does not share decomposition edges with other levels (except for the root): \(\forall (n, n') \in DE \bullet (n \in L_i \Leftrightarrow n' \in L_i) \lor (n = r \land n' = \text{root}(L_i)) \).
- is itself a valid FD, i.e. \((L_i, P \cap L_i, \text{root}(L_i), \lambda \cap (L_i \rightarrow \mathbb{N} \times \mathbb{N}), DE \cap (L_i \times L_i), \emptyset) \) satisfies Definition 1.4

Figure 5 illustrates how the example of Figure 3 is represented in \(\mathcal{L}_{DynFD} \). Note that, for the purpose of this paper, we chose an arbitrary concrete syntax for expressing levels, viz. the dotted lines. This is meant to be illustrative, since a tool implementation should rather present each level separately, so as to not harm scalability.

Given the new syntactic domain, we need to revise the semantic function. As for the semantic domain, it can remain the same, since we still want to reason about the possible configuration paths of an FD. The addition of multiple...
levels, however, requires us to reconsider what a legal configuration path is. Indeed, we want to restrict the configuration paths to those that obey the levels specified in the FD. Formally, this is defined as follows.

Definition 11 (Dynamic FD semantics [d]_{DynFD}) Given an FD d ∈ L_{DynFD}, [d]_{DynFD} returns all paths π that are legal wrt. Definition 7, i.e. π ∈ [d]_{CP}, and for which exists a legal level arrangement, that is π, except for its initial stage, can be divided into levels: π = σ_1Σ_1...Σ_i, each Σ_i corresponding to an L_i such that:

1. (11.1) Σ_i is fully configured: |final(Σ_i)|_{L_i} = 1, and
2. (11.2) ∀σ_jσ_{j+1} • π = ...σ_jσ_{j+1}... and σ_{j+1} ∈ Σ_i, we have
 \((σ_j \setminus σ_{j+1})|_{L_i} \subseteq (σ_j|_{L_i} \setminus σ_{j+1}|_{L_i}) \).

As before, this will be noted π ∈ [d]_{DynFD}, or π ∈ [d]_{DynFD} d.

We made use of the following helper.

Definition 12 (Final stage of a level Σ_i) For i = 1...l,

\[final(Σ_i) \begin{cases} last(Σ_i) & \text{if } Σ_i \neq ϵ \\ final(Σ_{i-1}) & \text{if } Σ_i = ϵ \text{ and } i > 1 \\ σ_1 & \text{if } Σ_i = ϵ \text{ and } i = 1 \end{cases} \]

The rule (11.2) expresses the fact that each configuration deleted from σ_j (i.e. ϵ ∈ σ_j \setminus σ_{j+1}) during level L_i must be necessary to delete one of the configurations of L_i that are deleted during this stage. In other words, the set of deleted configurations needs to be included in the set of deletable configurations for that level. The deletable configurations in a stage of a level are those that indeed remove configurations pertaining to that level (hence: first reduce to the level, then subtract), whereas the deleted configurations in a stage of a level are all those that were removed (hence: first subtract, then reduce to level to make comparable). Intuitively, this corresponds to the fact that each decision has to affect only the level at which it is taken.

4.3 Illustration

Let us illustrate this with the FD of Figure 5, which we will call d, itself being based on the example of Figure 3 in Section 3. The semantic domain of [d]_{DynFD} still consists of configuration paths, i.e. it did not change from those of [d]_{CP} shown in Figure 4. Yet, given that [d]_{DynFD} takes into account the levels defined for d, not all possible configuration paths given by [d]_{CP} are legal. Namely, those that do not conform to rules (11.1) and (11.2) need to be discarded. This is depicted in Figure 6, where the upper box denotes the staged configuration semantics of d ([d]_{DynFD}), and the lower box denotes [d]_{DynFD}, i.e. the subset of [d]_{DynFD} that conforms to Definition 11.

We now zoom in on two configuration paths π_i, π_j ∈ [d]_{DynFD}, shown with the help of intermediate FDs in the lower part of Figure 6. As noted in Figure 6, π_i is not part of [d]_{DynFD} since it violates Definition 11, whereas π_j satisfies it and is kept. The rationale for this is provided in Table 3. Indeed, for π_j, there exists no level arrangement that would satisfy both rules (11.1) and (11.2). This is because in σ_{2j}, it is not allowed to remove the feature B_2, since it belongs to L_2, and L_1 is not yet completed. Therefore, either there is still some variability left in the FD at the end of the level, which is thus not fully configured (the first possible arrangement of π_j in Table 3 violates rule (11.1)), or the set of deleted configurations is greater than the set of deletable configurations (the other two arrangements of π_j in Table 3, which violate rule (11.2)). For π_i, on the other hand, a valid level arrangement exists and is indicated by the highlighted line in Table 3. More details for this illustration are provided in [3].

5 Towards automation and analysis

This section explores properties of the semantics we just defined and sketches paths towards automation.

5.1 Properties of the semantics

In Definition 11, we require that it has to be possible to divide a configuration path into level arrangements that satisfy certain properties. The definition being purely declarative, it does not allow an immediate conclusion as to how many valid level arrangements one might find. The following two theorems show that there is exactly one. Their proofs can be found in [3].
denotes the subsequence

Given an FD

Definition 15 (Subsequence of level arrangement)

for its creation. Therefore, levels need not be part of the se-
unique level arrangement describing the process followed
given a configuration path, it is possible to determine a
ration path
diagram
fies the following properties.

\[
\begin{align*}
[d]_{CP} &= \ldots, \pi_i = \sigma_1\sigma_2\sigma_3, \ldots, \pi_j = \sigma_1\sigma_2\sigma_3, \ldots \\
[d]_{DynFD} &= \ldots, \pi_i = \sigma_1\sigma_2\sigma_3, \ldots \\
\text{with } \pi_i &= \begin{cases}
\sigma_1 \\
\sigma_{2i} \\
\sigma_{3i}
\end{cases}
\end{align*}
\]

with \(\pi_i = \begin{cases}
\sigma_1 \\
\sigma_{2i} \\
\sigma_{3i}
\end{cases}\)

\[\begin{align*}
\pi_j &= \begin{cases}
\sigma_1 \\
\sigma_{2j} \\
\sigma_{3j}
\end{cases}
\end{align*}\]

\[\begin{align*}
\text{Figure 6. Example of Figure 3 in } [d]_{CP} \text{ and } [d]_{DynFD}.
\end{align*}\]

Theorem 13 (Properties of level arrangements)* Given a
diagram \(d \in L_{DynFD} \), each configuration path \(\pi \in
[d]_{DynFD} \) with \(\Sigma_1, \Sigma_t \) as a valid level arrangement satisfies
the following properties.

1. (13.1) If \(\sigma_j \in \Sigma_i \) then \(\forall k < j \bullet |\sigma_k|_{L_i} > |\sigma_j|_{L_i}|. \)
2. (13.2) If \(\sigma_j \in \Sigma_i \) and \(\sigma_j \neq \text{last}(\Sigma_i) \) then \(|\sigma_j|_{L_i}| > 1. \)
3. (13.3) If \(|\sigma_j|_{L_i}| = 1 \) then \(\forall k > j \bullet \sigma_k \notin \Sigma_i. \)
4. (13.4) If \(|\sigma_j|_{L_i}| = 1 \) then \(\forall k > j \bullet |\sigma_k|_{L_i}| = 1. \)

Theorem 14 (Uniqueness of level arrangement) For any
diagram \(d \in L_{DynFD} \), a level arrangement for a configu-
ration path \(\pi \in [d]_{DynFD} \) is unique.

An immediate consequence of this result is that it is possible
to determine a legal arrangement *a posteriori*, i.e. given a configuration path, it is possible to determine a unique level arrangement describing the process followed for its creation. Therefore, levels need not be part of the semantic domain. This result leads to the following definition.

Definition 15 (Subsequence of level arrangement)

Given an FD \(d \) and \(L_i \in L, \pi \in [d]_{DynFD} \), sub\((L_i, \pi)\)
denotes the subsequence \(\Sigma_i \) of \(\pi \) pertaining to level \(L_i \) for
the level arrangement of \(\pi \) that satisfies Definition 11.

Continuing with Definition 11, remember that rule (11.2) requires that every deleted configuration be deletable in the stage of the associated level. An immediate consequence of this is that, unless we have reached the end of the configuration path, the set of deletable configurations must not be empty, established in Theorem 16. A second theorem, Theorem 17, shows that configurations that are deletable in a stage, are necessarily deleted in this stage.

Theorem 16 A necessary, but not sufficient replacement for rule (11.2) is that \((\sigma_{j+1})_{L_i} \neq \emptyset. \)

Proof. Immediate via reductio ad absurdum.

Theorem 17 For rule (11.2) of Definition 11 holds

\[
(\sigma_j \setminus \sigma_{j+1})_{L_i} \subset (\sigma_j|_{L_i} \setminus \sigma_{j+1}|_{L_i})
\]

\[
\Rightarrow (\sigma_j \setminus \sigma_{j+1})_{L_i} = (\sigma_j|_{L_i} \setminus \sigma_{j+1}|_{L_i}).
\]

Proof. In [3], we prove that always

\[
(\sigma_j \setminus \sigma_{j+1})_{L_i} \supseteq (\sigma_j|_{L_i} \setminus \sigma_{j+1}|_{L_i})
\]

which means that in addition \((\sigma_j \setminus \sigma_{j+1})_{L_i} \subseteq (\sigma_j|_{L_i} \setminus \sigma_{j+1}|_{L_i}) \) holds, both sets are equal.
In Theorem 9, Section 4.1, we showed that the transformation rules of Figure 2, i.e. those proposed in [5] that relate to constructs formalised in the abstract syntax of Definition 10, are not expressively complete wrt. the basic staged configuration semantics of Definition 7. The two following theorems provide analogous results, but for the dynamic FD semantics. Basically, the property still holds for the dynamic FD semantics of Definition 11, and a similar property holds for the proposed inter-level link types of Table 2.

Theorem 18 (Incompleteness of transformation rules)

The transformation rules shown in Figure 2 are expressively incomplete wrt. the semantics of Definition 11.

Proof. We can easily construct an example for \(\mathcal{L}_{\text{DynFD}} \); it suffices to take the FD used to prove Theorem 9 and to consider it as the sole level of a diagram. From there on, the proof is the same. \(\square \)

Theorem 19 (Incompleteness of inter-level link types)

The inter-level link types proposed in [5] are expressively incomplete wrt. the semantics of Definition 11.

Proof. Basically, the proposed inter-level link types always have a sole feature on their right-hand side. It is thus impossible, for example, to express the fact that if some condition \(\phi \) is satisfied for level \(L_i \), all configurations of level \(L_{i+1} \) that have \(f \) will be excluded if they also have \(f' \) (i.e. \(\phi \Rightarrow (f' \Rightarrow \neg f) \)). \(\square \)

5.2 Implementation strategies

A formal semantics is generally the first step towards an implementation, serving basically as a specification. In the case of FDs, two main types of tools can be considered: **modelling** tools, used for creating FDs, and **configuration** tools, used during the product derivation phase. Since the only difference between \(\mathcal{L}_{\text{FD}} \) and \(\mathcal{L}_{\text{DynFD}} \) is the addition of configuration levels, it should be rather straightforward to extend existing FD modelling tools to \(\mathcal{L}_{\text{DynFD}} \). In addition, the core of the presented semantics deals with configuration. Let us therefore focus on how to implement a configuration tool for \(\mathcal{L}_{\text{DynFD}} \), i.e. a tool that allows a user to configure a feature diagram \(d \in \mathcal{L}_{\text{DynFD}} \), allowing only the configuration paths in \([d]_{\text{DynFD}} \), and preferably without having to calculate the whole of \([d]_{\text{FD}} \), \([d]_{\text{CP}} \) or \([d]_{\text{DynFD}} \). Also note that, since we do not consider ourselves experts in human-machine interaction, we restrict the following discussion to the implementation of the semantics independently from the user interface. It goes without saying that at least the same amount of thought needs to be devoted to this activity [2].

The foundation of a tool, except for purely graphical ones, is generally a reasoning back-end. Mannion and Batory [9, 1] have shown how an FD \(d \) can be encoded as a Boolean formula, say \(\Gamma_d \in \mathcal{B}(N) \); and a reasoning tool based on this idea exists for \(\mathcal{L}_{\text{FD}} \) [16]. The free variables of \(\Gamma_d \) are the features of \(d \), so that, given a configuration \(c \in [d]_{\text{FD}} \), \(f_i = \text{true} \) denotes \(f_i \in c \) and \(\text{false} \) means \(f_i \not\in c \). The encoding of \(d \) into \(\Gamma_d \) is such that evaluating the truth of an interpretation \(c \) in \(\Gamma_d \) is equivalent to checking whether \(c \in [d]_{\text{FD}} \). More generally, satisfiability of \(\Gamma_d \) is equivalent to non-emptiness of \([d]_{\text{FD}} \). Given this encoding, the reasoning back-end will most likely be a SAT solver, or a derivative thereof, such as a logic truth maintenance system (LTMS) [6] as suggested by Batory [1].

The configuration tool mainly needs to keep track of which features were selected, which were deselected and what other decisions, such as restricting the cardinality of a decomposition, were taken. This configuration state basically consists in a Boolean formula \(\Delta_d \in \mathcal{B}(N) \), that captures which configurations have been discarded. Feasibility of the current configuration state, i.e. whether all decisions taken were consistent, is equivalent to satisfiability of \(\Gamma_d \land \Delta_d \). The configuration process thus consists in adding new constraints to \(\Delta_d \) and checking whether \(\Gamma_d \land \Delta_d \) is still satisfiable.

A tool implementing the procedure sketched in the previous paragraph will inevitably respect \([d]_{\text{CP}} \). In order to respect \([d]_{\text{CP}} \), however, the configuration tool also needs to make sure that each time a decision \(\delta \) is taken, all other decisions implied by \(\delta \) be taken as well, for otherwise rule (7.2) might be violated in subsequent stages. This can easily be achieved using an LTMS which can propagate constraints as the user makes decisions. This way, once she has selected a feature \(f \) that excludes a feature \(f' \), the choice of \(f' \) will not be presented to the user anymore. The LTMS will make it easy to determine which variables, i.e. features, are still free and the tool should only present those to the user.

The extended procedure would still violate \([d]_{\text{DynFD}} \), since it does not enforce constraints that stem from level definitions. A second extension is thus to make sure that the tool respects the order of the levels as defined in \(d \), and only presents choices pertaining to the current level \(L_i \) until it is dealt with. This means that the formula of a decision \(\delta \) may only involve features \(f \) that are part of the current level (rule (11.2)). It also means that the tool needs to be able to detect when the end of a level \(L_i \) has come (rule (11.1)), which is equivalent to checking whether, in the current state of the LTMS, all of the \(f \in L_i \) are assigned a fixed value.

Given these guidelines, it should be relatively straightforward to come up with an architecture and some of the principal algorithms for a tool implementation.

6 Conclusion and future work

We introduced a dynamic formal semantics for FDs that allows reasoning about its configuration paths, i.e. the con-
configuration process, rather than only about its allowed configurations. Extending the basic dynamic semantics with levels yields a semantics for MLSC. The contribution of the paper is therefore a precise and formal account of MLSC that makes the original definition [5] more explicit and reveals some of its subtleties and incompletenesses. Based on the semantics we show some interesting properties of configuration paths and outline an implementation strategy that uses SAT solvers as the reasoning back-end.

A number of extensions to the dynamic FD semantics can be envisioned. From the original definition of MLSC [5], it inherits the assumption that levels are configured one after the other in a strict order until the final configuration is obtained. One way to extend the semantics is to relax this restriction and to allow levels that are interleaved, or run in parallel. The semantics also assumes that the configuration finishes at some point. This is not the case for dynamic or self-adaptive systems. Those systems have variability left at runtime, allowing them to adapt to a changing environment. In this case, configuration paths would have to be infinite. Another extension we envision is to add new FD constructs (like feature cardinalities and attributes) to the formalism. The ultimate goal of our endeavour is naturally to develop a configurator that would be compliant with the formalism, verify properties and compute various indicators.

These points are partly discussed in Section 2 and more extensively in [3]. They will be elaborated on in our future work, where we also intend to tackle the problem of FD evolution taking place during configuration.

Acknowledgements

This work is sponsored by the Interuniversity Attraction Poles Programme of the Belgian State of Belgian Science Policy under the MoVES project and the FNRS.

References